Refine Your Search

Topic

Search Results

Technical Paper

Audi Aero-Acoustic Wind Tunnel

1993-03-01
930300
The present paper reveals the design concept as well as results of experimental investigations, which were conducted in the early design stage of the planned AUDI Aero-Acoustic Wind Tunnel. This low-noise open-jet facility, featuring a nozzle exit area of 11 m2 and a top speed of approximately 60 m/s, enables aerodynamic as well as acoustic testing of both, full-scale and model-scale ground vehicles. Ground simulation is provided by means of a moving-belt rig. The surrounding plenum is designed as a semi-anechoic chamber to simulate acoustic free-field conditions around the vehicle. Fan noise will be attenuated below the noise level of the open jet. The work reported herein, comprises 1/8-scale pilot-tunnel experiments of aerodynamic and acoustic configurations which were carried out at the University of Darmstadt.
Technical Paper

Comparison of Different Ground Simulation Techniques for Use in Automotive Wind Tunnels

1990-02-01
900321
The range of applicability and the physical restrictions for the use of ground-simulation techniques in automotive wind tunnels are elucidated. The techniques considered are the moving-belt technique, as well as boundary layer control techniques like tangential blowing and distributed normal suction for use in wind tunnels with stationary ground boards. Attention has to be paid to the question of whether the flow to be simulated is of boundary layer or Couette type. In the case of boundary layer flow, interaction of the ground-floor boundary layer with the inviscid flow in the gap between a vehicle and the road can be fully simulated by introducing a negative transpiration velocity along the stationary ground plane. In practise however, angularity effects on the external flow result from mismatched control parameters. Very small relative ground clearances give rise to the formation of a Couette flow between the road and the vehicle.
Technical Paper

Some Basic Investigations into the Principles of Ground Simulation Techniques in Automotive Wind Tunnels

1989-02-01
890369
With the help of theoretical considerations it is shown that the flow between a car and the ground is of boundary layer type, as long as there is no recirculation. Thus, boundary layer theory can be applied to evaluate the order of magnitude of typical effects like displacement and momentum-loss thicknesses of ground-plane boundary layer. If the boundary layer in a wind tunnel with stationary ground is to be controlled, either by distributed suction or by tangential blowing, to simulate on-road conditions, boundary layer theory can provide the orders of magnitude of modifications that have to be applied. Experiments with a ground-effect quarter-scale car with ground simulation by distributed suction and moving belt showed coincidence with theoretical predictions concerning the required suction rate, if integral coefficients (eg CD, CL) of both flow cases are matched.
X